Specifying statistical models : from parametric to non-parametric, using Bayesian or non-Bayesian approaches /

Guardado en:
Autor Corporativo: Franco-Belgian Meeting of Statisticians Louvain-la-Neuve, Bélgica)
Otros Autores: Florens, J. P. (Editor )
Formato: Libro
Idioma:English
Publicado: New York : Springer-Verlag, c1983.
Series:Lecture notes in statistics (Springer-Verlag) ; v. 16.
Materias:
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Tabla de Contenidos:
  • Léopold Simar, Protecting against gross errors: the aid of Bayesian methods
  • A. F. M. Smith, Bayesian approaches to outliers and robustness
  • J.-P. Raoult, D. Criticou and D. Terzakis, The probability integral transformation for nonnecessary absolutely continuous distribution functions, and its application to goodness-of-fit tests
  • Paul Doukhan, Simulation in the general first order autoregressive process (unidimensional normal case)
  • Denis Bosq, Nonparametric prediction in stationary processes
  • J.-P. Florens, Approximate reductions of Bayesian experiments
  • M. Mouchart and L. Simar, Theory and applications of least squares approximation in Bayesian analysis
  • J.-M. Rolin, Nonparametric Bayesian statistics: a stochastic process approach
  • Lucien Birgé, Robust testing for independent nonidentically distributed variables and Markov chains
  • A. Hillion, On the use of some variation distance inequalities to estimate the difference between sample and perturbed sample
  • Jacques Benasseni, A contribution to robust principal component analysis
  • Gérard Collomb, From nonparametric regression to nonparametric prediction: survey of the mean square error and original results on the predictogram.