Marcos argumentativos etiquetados

El área de la representación del conocimiento y el razonamiento rebatible en Inteligencia Artificial se especializa en modelar el proceso de razonamiento humano de manera tal de establecer qué conclusiones son aceptables en un contexto de desacuerdo. En términos generales, las teorías de la argum...

Descripción completa

Guardado en:
Autor Principal: Budán, Maximiliano Celmo David
Otros Autores: Simari, Guillermo R.
Formato: Online
Idioma:spa
Publicado: 2015
Acceso en línea:http://repositoriodigital.uns.edu.ar/handle/123456789/2544
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Sumario:El área de la representación del conocimiento y el razonamiento rebatible en Inteligencia Artificial se especializa en modelar el proceso de razonamiento humano de manera tal de establecer qué conclusiones son aceptables en un contexto de desacuerdo. En términos generales, las teorías de la argumentación se ocupan de analizar las interacciones entre los argumentos que están a favor o en contra de una determinada conclusión, para finalmente establecer su aceptabilidad. El objetivo principal del presente trabajo es expandir la capacidad de representación de los marcos argumentativos permitiendo representar las características especiales de lo argumentos, y analizar cómo éstas se ven afectadas por las relaciones de soporte, agregación y ataque que se establecen entre los argumentos de un modelo que representa una determinada discusión argumentativa. Para ello, añadiremos un meta-nivel de información a los argumentos en la forma de etiquetas extendiendo así sus capacidades de representación, y brindaremos las herramientas necesarias para propagar y combinar las etiquetas en el dominio de la argumentación. Finalmente, utilizaremos la información proporcionada por las etiquetas para optimizar el proceso de aceptabilidad de los argumentos y brindar así resultados más refinados.