Classics on fractals /
Guardado en:
Otros Autores: | |
---|---|
Formato: | Libro |
Idioma: | English |
Publicado: |
Reading, Mass. :
Addison-Wesley, Advanced book program,
c1993.
|
Series: | Studies in nonlinearity
|
Materias: | |
Acceso en línea: | Errata (PDF) |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Tabla de Contenidos:
- On continuous functions of a real argument that do not have a well-defined differential quotient /
- Karl Weierstrass
- On the power of perfect sets of points /
- Georg Cantor
- On a continuous curve without tangents constructible from elementary geometry /
- Helge von Koch
- On the linear measure of point sets : a generalization of the concept of length /
- Constantin Carathéodory
- Dimension and outer measure /
- Felix Hausdorff
- General spaces and Cartesian spaces /
- Karl Menger
- Improper sets and dimension numbers (excerpt) /
- Georges Bouligand
- On a metric property of dimension /
- L. Pontrjagin and L. Schnirelmann
- On the sum of digits of real numbers represented in the dyadic system /
- A. S. Besicovitch
- On rational approximation to real numbers /
- A. S. Besicovitch
- On dimensional numbers of some continuous curves /
- A. S. Besicovitch and H. D. Ursell
- Plane or space curves and surfaces consisting of parts similar to the whole /
- Paul Lévy
- Additive functions of intervals and Hausdorff measure /
- P. A. P. Moran
- The dimension of Cartesian product sets /
- J. M. Marstrand
- On the complementary intervals of a linear closed set of zero Lebesgue measure /
- A. S. Besicovitch and S. J. Taylor
- On some curves defined by functional equations /
- Georges de Rham
- $ epsilon$-entropy and $ epsilon$-capacity of sets in functional spaces (excerpt) /
- A. N. Kolmogorov and V. M. Tihomirov
- A simple example of a function, which is everywhere continuous and nowhere differentiable /
- Karl Kiesswetter
- How long is the coast of Britain? Statistical self-similarity and fractional dimension /
- Benoit Mandelbrot
- [Science 156 (1967), no. 3775, 636-638].