Classics on fractals /

Guardado en:
Otros Autores: Edgar, Gerald A., 1949- (Editor )
Formato: Libro
Idioma:English
Publicado: Reading, Mass. : Addison-Wesley, Advanced book program, c1993.
Series:Studies in nonlinearity
Materias:
Acceso en línea:Errata (PDF)
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Tabla de Contenidos:
  • On continuous functions of a real argument that do not have a well-defined differential quotient /
  • Karl Weierstrass
  • On the power of perfect sets of points /
  • Georg Cantor
  • On a continuous curve without tangents constructible from elementary geometry /
  • Helge von Koch
  • On the linear measure of point sets : a generalization of the concept of length /
  • Constantin Carathéodory
  • Dimension and outer measure /
  • Felix Hausdorff
  • General spaces and Cartesian spaces /
  • Karl Menger
  • Improper sets and dimension numbers (excerpt) /
  • Georges Bouligand
  • On a metric property of dimension /
  • L. Pontrjagin and L. Schnirelmann
  • On the sum of digits of real numbers represented in the dyadic system /
  • A. S. Besicovitch
  • On rational approximation to real numbers /
  • A. S. Besicovitch
  • On dimensional numbers of some continuous curves /
  • A. S. Besicovitch and H. D. Ursell
  • Plane or space curves and surfaces consisting of parts similar to the whole /
  • Paul Lévy
  • Additive functions of intervals and Hausdorff measure /
  • P. A. P. Moran
  • The dimension of Cartesian product sets /
  • J. M. Marstrand
  • On the complementary intervals of a linear closed set of zero Lebesgue measure /
  • A. S. Besicovitch and S. J. Taylor
  • On some curves defined by functional equations /
  • Georges de Rham
  • $ epsilon$-entropy and $ epsilon$-capacity of sets in functional spaces (excerpt) /
  • A. N. Kolmogorov and V. M. Tihomirov
  • A simple example of a function, which is everywhere continuous and nowhere differentiable /
  • Karl Kiesswetter
  • How long is the coast of Britain? Statistical self-similarity and fractional dimension /
  • Benoit Mandelbrot
  • [Science 156 (1967), no. 3775, 636-638].