Monopoles and three-manifolds /
This work provides a comprehensive treatment of Floer homology, based on the Seiberg-Witten monopole equations.
Guardado en:
Autor Principal: | |
---|---|
Otros Autores: | |
Formato: | Libro |
Idioma: | English |
Publicado: |
Cambridge, UK ; New York :
Cambridge University Press,
2011.
|
Edición: | 1st pbk. ed. |
Series: | New mathematical monographs ;
10. |
Materias: | |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
LEADER | 01613cam a22003494a 4500 | ||
---|---|---|---|
001 | inmabb006838 | ||
008 | 110222r20112007enka#####b####001#0#eng## | ||
005 | 20140313141516.0 | ||
245 | 1 | 0 | |a Monopoles and three-manifolds / |c Peter Kronheimer, Tomasz Mrowka. |
250 | |a 1st pbk. ed. | ||
260 | |a Cambridge, UK ; |a New York : |b Cambridge University Press, |c 2011. | ||
300 | |a xii, 796 p. : |b il. ; |c 23 cm. | ||
490 | 1 | |a New mathematical monographs ; |v 10 | |
500 | |a Originally published: 2007. | ||
504 | |a Incluye referencias bibliográficas (p. 779-784) e índice. | ||
505 | 0 | |a 1. Outlines -- 2. The Seiberg-Witten equations and compactness -- 3. Hilbert manifolds and perturbations -- 4. Moduli spaces and transversality -- 5. Compactness and gluing -- 6. Floer homology -- 7. Cobordisms and invariance -- 8. Non-exact perturbations -- 9. Calculations -- 10. Further developments. | |
520 | |a This work provides a comprehensive treatment of Floer homology, based on the Seiberg-Witten monopole equations. | ||
510 | 4 | |a MR, |c 2009f:57049 | |
020 | |a 9780521184762 (pbk.) | ||
020 | |a 0521184762 (pbk.) | ||
100 | 1 | |a Kronheimer, P. B. |9 084304 | |
700 | 1 | |a Mrowka, Tomasz. |9 186863 | |
830 | 0 | |a New mathematical monographs ; |v 10. | |
650 | 0 | |a Three-manifolds (Topology) |9 063395 | |
650 | 0 | |a Homology theory. |9 067815 | |
650 | 0 | |a Seiberg-Witten invariants. |9 186867 | |
650 | 0 | |a Moduli theory. |9 092381 | |
084 | |a 57R57 (53C27 57N10 57R57 57R58) |2 msc2000 | ||
010 | |a 2010537652 | ||
016 | 7 | |a 015654235 |2 Uk | |
040 | |a UKM |c UKM |d YDXCP |d UNA |d DLC | ||
859 | |h 57 |i K93 |p A-8870 |b BIB. MATEMATICA |